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 

Abstract— This paper deals with the design of a robust 

prescribed performance control (PPC) approach for nonlinear 

morphing missile systems with unknown dynamics and 

uncertainties. prescribed performance function (PPF) is 

integrated  into the control design, such that capable of 

guaranteeing, for any a priori known initial state condition, 

bounded signals in the closed loop, as well as prescribed 

performance for the output tracking error, We propose a 

systematic control design procedure, where the 

proportional-like controls are obtained by using the 

transformed tracking errors with PPF. Finally, extensive 

simulations are conducted based on linear and nonlinear 

morphing missile to validate the convergence performance and 

the robustness of the investigated control method 

 

Index Terms— morphing missile system, nonlinear system 

prescribed performance control (PPC), prescribed performance 

function (PPF), robust control 

I. INTRODUCTION 

The concept of morphing is to guarantee the ability of a 

flying structure to obtain better flight performance, to 

accommodate multiple flight regimes according to the 

different flight missions, and to achieve certain maneuvers or 

specifications by means of in-flight shape changing. In 

practical applications, these shape variations may be 

continuous, smooth and seamless in corresponding to the 

time-varying camber, wing twist and self-adapting wings 

which are essential for improving the overall aircraft 

performance during the past several years, adaptive control of 

systems possessing complex and unknown nonlinear 

dynamics has attracted considerable research effort. 

Significant progress has been achieved through adaptive 

feedback linearization[1], adaptive back stepping [2], control 

Lyapunov functions [3] and adaptive neural network/fuzzy 

logic control [4].The aforementioned results were obtained 

for systems in affine form, that is, for plants linear in the 

control input variables. However, there exist practical 

systems such as chemical processes and flight control 

systems, which can not be expressed in an affine form The 

difficulty associated with the control design of such systems 

arises from the fact that an explicit inverting control design is, 

in general, impossible, even though the inverse exists. 

Initially, no affine systems in low triangular canonical form 

(i.e., system nonlinearities satisfy a matching condition) 

were considered. Subsequently, as the problem became more 

apparent, the significantly more complex as well as general 

class of pure feedback non affine systems (i.e., all system 

states and control inputs appear implicitly in the system 

nonlinearities) was tackled. Works incorporating the Mean  
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Value Theorem [5]-[13], the Taylor series expansion [14] 

and the contraction mapping method [15]-[16] have been 

proposed to decompose the original non affine system into an 

affine in the control part and a no affine part representing 

generalized modeling errors. Subsequently, standard robust 

adaptive control tools were employed. However, 

approximating this “ideal controller “a difficult task, leading 

also to complex neural network and fuzzy system structures. 

In [17]- [18], instead of seeking a direct solution to the inverse 

problem, an analytically invertible model was introduced and 

a neural network was designed to compensate for the 

inversion error. However, another critical issue in the control 

design for morphing missile systems is the transient tracking 

response. This is particularly important for their safe 

operation, because the missile systems with very aggressive 

transient control performance (e.g. overshoot, oscillation and 

convergence rate) may be broken before they reach the 

steady-state. 

The objective of this paper is to further study the PPC 

design and PID control for nonlinear morphing missile 

systems subject to uncertainties and disturbances, and to 

present a robust control with guaranteed steady-state and 

transient performance without using any function 

approximator. The paper is organized as follows. Section II 

presents the mathematic model of Morphing UAV systems,. 

In Section III, a robust approximation-free control design is 

provided, and the closed-loop system stability is also 

rigorously proved. In Section IV, simulations are given to 

demonstrate the efficacy and the improved performance of the 

suggested algorithm. Finally, some conclusions are presented 

in Section V. 

 

II. PROBLEM STATEMENT AND PRELIMINARIES 

A.  Dynamics of Morphing missile System   

This paper will study the control design for morphing UAV 

or missile systems. A typical control and guidance process of 

nonlinear morphing missile systems can be given in Fig. 1 

 
In this paper, we will present the dynamics and the 

associated control design for the attitude loop, which can 
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make the flight dynamics to track a given reference cx . The 

system states, e.g. the pitch speed q  and the acceleration of 

the mass center yn  , are all measured by using the inertial 

measurement units (IMU) with three-axis gyros and three-axis 

accelerometer. For the purpose of control design, we consider 

the following nonlinear morphing missile systems in the pitch 

plane. 
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Where the control input q   denotes the deflection of the 

control surface. The nonlinear force or moment vector 

 , , 1,2i yf n q i   are continuous functions of their 

coordinates, and 
d

u represents the model uncertainties and 

external disturbances imposed on the morphing UAV. It is 

noted that the system representation (1) is generic as it can 

cover versatile systems, e.g. linear systems, nonlinear systems 

in canonical form, strict-feedback form or pure feedback form 

(as shown in simulation section). 

Assumption 1    the nonlinear function   

 , , 1,2i yf n q i   are continuous and   there exist 

unknown positive constant 1, 2g g o  such that

:    Assumption 1 the nonlinear function   

 , , 1,2i yf n q i   are continuous and   there exist 

unknown positive constant 1, 2g g o  such that
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Moreover, the 

Signs of 
 1 ,yf n q

q




 and 

 2 , , ,y qf n q d

q




  are strictly 

positive or negative. Without loss of generality,

 

we assume 

they are all positive in this paper  

Remark 1: Assumption 1 indicates that the control in put 

gains must be non zero for all t>0. This a well known 

controllable condition in the control system designs .this 

condition can be fulfilled in most practical systems(e.g. 

morphing system (1)and this not stringent .moreover ,in 

contrary to a variable control methods for system (1),we we 

do need any precise knowledge of the system nonlinearities or 

even of their upper bounds. The objective of the control 

design is to find an appropriate control input q   such that (1) 

the system output yn tracks a given command cx to achieve 

the desired guidance;2)transient and steady-state response of 

the tracking error      1 y ce t n t x t  can be ensured 

within a given prescribed set. 

    

B. Prescribed Performance Function

   

 

As stated in above, the control design can characterize 

both, the transient and steady-state error response, e.g. the 

error convergence rate, maximum overshoot and the 

allowable steady-state error. Thus, we will further explore the 

idea of PPC. The basic principle is to introduce a PPF and the 

associated error transform. However, the nonlinear system 

dynamics should be fully known or estimated in terms of 

function approximators. This issue will be tackled by 

introducing a new approximation-free control scheme with 

low complexity in this paper. We first introduce the following 

positive decreasing smooth function   :t R R   as 

PPF 

        0

ltt e   

                   (2)                                                                                              

Where 0 ,  and l  are all positive constants selected by 

the designers which determine the initial error bound, ultimate 

error bound and the convergence speed, 

Respectively apparently, the PPF (2) fulfills the following 

conditions 

  (i)  t  is positive and decreasing; 

  (i)     0
0

lim 0, lim
t t

t t   
 

    

Thus, the control design objective 

 

 
Figure 2. Prescribed tracking error bound 

With    0

ltt e   

   
 

The constant  represents the maximum allowable size of 

the tracking error 1e  in the steady-state, the decreasing rate l 

introduces a lower bound on the required convergence speed 

of 1e  , and the maximum overshoot is determined by min 

{ 0 0,  }, which may even be set as zero by setting     , 

  = 0 . Thus, the performance function ρ (t) and the 

constants 0 ,  , l , and   ,    can be appropriately 

selected to specify both the transient and steady-state 

performance of 1e   .Moreover, to solve the control problem 

with prescribed performance (3), an error transform will be 

introduced by transforming the condition (3) into an 

equivalent “unconstrained”. For this purpose, we define a 

smooth, strictly increasing function of the transformed error 

 i t R  such that: 

(i)   ,i is L         

(ii)    lim lim
i i

i is and s
 

   
 

    
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In the subsequent control design, we will use the following 

function: 

1) can be achieved by retaining  e t  within a predefined 

set by using  t  which can be given as 

:      1 , 0t e t t t     
              

(3)                                                                          

Where ,  >0 are all positive constants. In figure 2 with 

an exponentially decaying performance function 

 
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


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                        (4)                                         

Since  is    is strictly monotonic increasing, the inverse 

function of  is  exists and can be given as:        

   1 1
2
ln i

i
i is

 

 
 




            (5)                                                                          

III. PRESCRIBED PERFORMANCE CONTROL DESIGN 

In this section, we will design a control to guarantee both 

the transient and steady-state performance, where the widely 

used functional approximation is avoided 

A. Controller Design                               

Since the studied system (1) is not in the standard canonical 

form, a recursive design procedure will be conducted to 

achieve the control objective. This can be processed as: 

Step 1: Define the output tracking error: 

            1 y ce t n t x t                             (6)                                           

Then we design the transformed error as 

     1

1 1t s t 
                      

                (7)                                                                          

Where    
 

1

11

e t

tt   is the normalized output 

error by using a similar PPF defined in (3) as 

    1

1 10 1 1

l t
t e   

   
                    (8)                      

Where the constant 10 , 1  and 1l  are all positive, 

and 10 , can be set to fulfill   100e    In this case, 

One may verify from (5) and (7) such that  
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  We can introduce an intermediate control 

                                      

 1 1

1
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ln
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Where 1k > 0 is the control gain, which can be set as   

appositive constant  

Step 2: Define the intermediate control error as: 

                                                                         

     2 de t q t q t                                        (11) 

  Where is the desired intermediate control given in (10) 

Similar to Step 1, we design the normalized error as 

   
 

2

22

e t

tt   with  
2

t   being a PPF given by 
 

    2

2 20 2 2

l t
t e   

   
                      (12)                                                                           

 

Where 20 , 2  , and 2l  are all positive constant , and  

20 ,is set to fulfill  2 200e  Thus, the transformed 

error of  2s    is defined as    

   2

2

1 1
2 2 2

lns
 

 
 




  where the error transform 

function  2s     is described in (5). Finally, a realistic 

control can be designed as                                                               

2 2
2 2 2

2

ln
k

q k
 

 
 

 
     

 
                      (13)                             

Where 2k  > 0 is a positive constant control gain. 

It  is shown  that  the above  recursive design procedure 

follows a similar design principle to  backstepping 

approaches .so that it can be easily  extended to high order 

systems .moreover ,the suggested control formulations 

(10)and (13) are proportional-like controls with the 

normalized errors   i t and the error transform function 

 1

i is  . Another salient feature of the proposed 

control (13) with (10) is that no precise knowledge of system 

nonlinearities or their upper bounds are required. 

Consequently, the widely used function approximates are not 

necessary In this sense, the overall control implementation 

has significantly reduced complexity. 

Remark 2: In this paper, the control objective is to 

guarantee the predefined transient and steady-state 

performance (3) for the output tracking error  1e t We also 

introduce an intermediate control error  2e t  in (10) with 

PPF, which can help to improve the overall control response. 

Moreover, the initial conditions   100e    

and  2 200e     are required in the following stability 

analysis, which can be trivially fulfilled by selecting 

appropriate PPF parameters    10  and 20 . 

 

B. Stability analysis 

This subsection will study the closed-loop system stability 

and the convergence of the presented control schemes. Before 

we present the main results of this paper, the following lemma 

is introduced : 

Lemma 1: If the transformed errors  1

i is  are 

bounded, i Mi   hold for positive constants    

0,Mi  then        , 0i i it e t t t       

Proof: From the definition and property of the error 

transform function (5), we take the inverse logarithmic 

function and know that 

                              
2 ii

i

e
 

 




                   (14)                                                                                                    

This further implies 
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Consequently, from the fact      i i it e t t   one 

may verify that       , 0i i it e t t t       holds. 

This completes the proof. Now, the main results of this paper 

can be summarized as follows 

Theorem 1: For nonlinear system (1), we design an 

approximation-free control (13) with (10), if the initial 

condition fulfills      0 0 0i i ie    , then all signals 

in the closed-loop system are bounded, and the output 

tracking error          1 y ce t n t x t 
  

can be retained 

within a prescribed set defined in   (3).    

 

IV. SIMULATIONS 

In this section extensive simulations are presented to 

validate the suggested control algorithms and to show the 

improvement of the control performance in comparison to 

standard PID control and feedback linearization control. 

     A. Linear Missile System   

We first validate the performance of the proposed 

controller by using a linear morphing missile 

system:
.

x Ax Bu       

34 34
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24 252
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34
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, ,

y

y

v
a n a

x gn
x A B

ag ax q
a

v a

 
 

    
         
     
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 (15)                                                      

 

Where the system parameters are defined as    
1

34 1.37135a s
2

24 45.5462a s  , 

1

22 0.1504a s  , 
2

25 59.7238a s , 204 / ,V m s  

29.8 /g m s .clearly, the proposed   (13)system (15) is a 

linear system, which can be taken as a specific form of the 

model (1). The initial conditions of the proposed controller 

are set  0,0
T

x  , and the PPF is, 1  , 1  ,and the 

control gain is 1ik   A unit step signal 1cx   is adopted as 

the reference Figs. 3-5 give the control responses of the 

morphing missile system with the proposed PPC and a 

standard PID control  
.

1 1 11.0 0.1 0.5z e e dt e    )From 

Fig. 3 and Fig. 4, it shows that the system states y n and q can 

accurately and quickly track the control command. Moreover, 

a fairly satisfactory tracking error response can be achieved 

with the proposed PPC as shown in Fig. 5, i.e. the tracking 

error converges to a small neighborhood of zero where the 

transient response can be retained within the predefined 

performance bound. However, the predefined transient bound 

cannot be guaranteed with the standard PID control, i.e. PID 

control produces large overshoot, which violates the given 

bound. Finally, it is shown in Fig. 6 that the control signal of 

the proposed control is bounded and smoother than that of 

PID control. 
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          B. Nonlinear Missile System 

  To show the ability of the suggested control scheme for 

nonlinear systems, we carry out    simulations by using the 

following nonlinear dynamic missile system as:      

   
.

x f x g x u   
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                              (16) 

Where
6 6

243 10a s  It can be verified that the system 

(16) is indeed a strict-feedback nonlinear system. In this case, 

to fulfill the initial conditions and for fair comparison, the 

PPF parameters and other control parameters are all the same 

as those used in Case A, and the other parameters are the same 

as case 4.1. Moreover, we also test the feedback linearization 

(FL) control, which is given as 1 1 ce x x  , 2 2 ce x x  , 

  1 2,1 ,s A e e  and 

 
    

..

1 2

1
0, ,

T

cu ks f x x e e
g x

 
       

 with 

parameters 4A  , 4k   
Figs. 7-10 illustrate the control response of the morphing 

missile system (16) with PID control, feedback linearization 

control and the developed PPC scheme. From Fig. 7 and Fig. 

8, it is shown that the profiles of  yn and q with the presented 

controller can accurately track the given commands, while 

both the transient and steady-state performance can be 

retained with the help of the used PPF (Fig. 9). On the other 

hand, the used PID controller leads to an aggressive transient 

response with fairly large overshoot although the convergence 

rate is faster than other two controllers. This may be because a 

large proportional gain is used in this case, which may result 

in oscillated control signal (Fig. 10). Moreover, the control 

response (i.e. output and control signal) of feedback 

linearization control is fairly smooth compared to the 

proposed control, although the transient convergence speed is 

slower than PPC as shown in Figs.9. However, it should be 

noted that the precise dynamics of system (16) should be fully 

known and used in this feedback linearization control scheme. 

Nevertheless, the proposed PPC in this paper does not use any 

information of the studied system. The simulation results 

illustrate the efficacy of the proposed robust 

approximation-free control, even with fully unknown 

nonlinear dynamics 
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                   With External Disturbance 

In order to test the robustness of the proposed control 

approach, we assume that the studied morphing UAV system 

(16) is perturbed with unknown disturbances, where d(t) is set 

as a uniform distribution signal with zero mean values. Figs. 

11-14 show the comparative simulation results of the 

aforementioned two controllers (e.g.PID control, and PPC). 

Fig. 11 and Fig. 12 provide the response of the controlled 

system output and state with the two control methods. One 

may find that the proposed PPC can successfully compensate 

for the effects of both the nonlinearities and disturbance, and 

thus guarantee the predefined transient and steady-state 

convergence performance. However, PID control leads to 

significant tracking error; thus, we can conclude that the 

proposed PPC control can achieve better tracking 

performance although the required control signal (Fig. 14) has 

fair oscillations for necessarily compensating the 

disturbances. 
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All above simulation results illustrate the capability of the 

suggested approximation-free PPC to cope with the unknown 

nonlinear dynamics, and also the enhanced robustness against 

external disturbances. Moreover, the improvement of the 

transient and steady-state control performance is achieved 

owing to the used PPF and associate error transform strategies 

V. CONCLUSIONS 

This paper is concerned with the robust prescribed 

performance control design for nonlinear morphing missile 

system with unknown dynamics and disturbances. The 

proposed control can guarantee both the transient and 

steady-state control performance without using any function 

approximator. For this purpose, a modified prescribed 

performance function and the associated error transform are 

first suggested, and then they are incorporated into a 

systematic recursive design procedure for high order systems. 

Specifically, the transient and steady-state error convergence 

of the closed-loop system can be quantitatively studied and 

guaranteed by selecting appropriate design parameters in a 

priori manner. Comparative simulation results validate the 

theoretical studies and illustrate the improvement of the 

control performance. 
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